

Contribution to the conception of a wireless underground sensors network for precision agriculture in Africa

FuzDeMa : a portable fuzzy-based decision-making tool for reliable communication in WUSN

Damien WOHWE SAMBO

(FUN Team – Inria Lille)

https://wsdamieno.github.io/Site_perso/#home

damien.wohwe-sambo@inria.fr

COPAIN research team seminar, 29th Juin (Clermont-Ferrand)

Content

01. Introduction

- **02.** WUSN-PLM : A new path loss model for wireless underground communications
- **03.** FuzDeMa : A new Lightweight and portable model for transmission
- **04.** Conclusion

Introduction

Agriculture \Leftrightarrow source of livelihood

- Agriculture as
 - Source of food supply;
- Country development index;
- Lack of production ⇒ local food shortages;
- Africa spent \$64.5 Billions on importing foods (AfDB, 2017);
- Food import will increase to over \$110 Billions by 2025;

*PAMACC*¹ : "Agricultural production in Africa will explode if technologies are made available to producers"

¹Pan African Media Alliance for Climate Change (PAMACC) is an association of African journalists who report on climate change, environment, sustainable development and related subjects

Challenges of WUSNs in agriculture

- Communication medium: SOIL;
- Mitigation of wireless communications
- Changes of soil properties
 ink qualities;
- Water presence reflection, refraction, ... of the EM waves (radio);
- e.g. Intelligent watering system ;

Waste of energy when sending data not received

What if each node

was able to predict in

would be received or

real time whether data

lost before it was sent?

What if...?

0

02

A new path loss model for Wireless underground communications

WUSN-PLM [DAB2020] : A new path loss model for Wireless underground communications

A model adapted to agriculture in Africa!

$$W_{\#1} = -288.8 + 20 \log \left(d_1 \cdot d_2 \cdot d_{ug} \cdot \beta \cdot f^2 \cdot \sqrt{\frac{2R}{1+R}} \right) + 8.68\alpha d_{ug}$$
(4)
$$W_{\#2} = -288.8 + 20 \log (d_1 \cdot d_2 \cdot d_{ug} \cdot \beta \cdot f^2) + 8.68\alpha d_{ug}$$
(5)

[DAB2020]. **D. Wohwe Sambo**, A. Förster, B. O. Yenke, I. Sarr, B. Gueye and P. Dayang "*Wireless Underground Sensor Networks Path Loss Model for Precision Agriculture (WUSN-PLM)*", IEEE Sensors Journal, vol. 20, no. 10, pp. 5298-5313, 2020.

Is this enough for agriculture application?

Experimental setup to collect data

Fig. Experimental onion field for the collection of data at the botanical garden of the Cheikh Anta Diop University in Dakar

[DAB2020]. D. Wohwe Sambo, A. Förster, B. O. Yenke, I. Sarr, B. Gueye and P. Dayang "Wireless Underground Sensor Networks Path Loss Model for Precision Agriculture (WUSN-PLM)", IEEE Sensors Journal, vol. 20, no. 10, pp. 5298-5313, 2020.

Results and validation of WUSN-PLM

Table 1: Evaluation of performances						
PRE	ACC	SEN	SEL	bACC	MCC	AUC
87,13 %	85 %	0.92	0.70	81.06 %	0.64	0.92

[DAB2020]. **D. Wohwe Sambo**, A. Förster, B. O. Yenke, I. Sarr, B. Gueye and P. Dayang "*Wireless Underground Sensor Networks Path Loss Model for Precision Agriculture (WUSN-PLM)*", IEEE Sensors Journal, vol. 20, no. 10, pp. 5298-5313, 2020.

Interesting but ... !

WUSN-PLM

Well done !! Interesting

However, it seems that the sensor nodes do not have enough computing resources!

Lightweight and portable model for transmission (FuzDeMa)

Q: Can I reach a recipient or not?

Need of a decision-making tool:

SEND or NOT ?

FuzDeMa

Need of a decision-making tool:

- Based on Sugeno FIS:
- 4 inputs ;
- 36 rules ;
- 1 output (probability of packet's reception) ;

What

an here!

Ich bin da

Εδώ είμαι 🤇

Je suis là

我在这里

Aquí estoy

Quick overview of FuzDeMa

[DBA2022]. **D. Wohwe Sambo**, B. O. Yenke, A. Förster, I. Ndong, P. Dayang and I. Sarr, "A New Fuzzy Logic Approach for Reliable Communications in Wireless Underground Sensor Networks", Springer Nature – Wireless Networks, vol. 28, no. 7, pp. 3275-3292, 2022.

Reduction of rules before calculation!

- If buried transmitter :
 - 18 rules needed;
- For les comm. UG2UG:
 - 9 rules needed;

Low humidity + comm. UG2UG + distance = 10m : 1 rule (R22)

R22: (BD=far) & (MST=average) & (LD=medium) & (NBD=far))=>(Reliab=medium)

 Reliab(medium) = 0.5 <> ½ chance to receive a packet

Evaluation et validation

Evaluation of the performances : SEN, bACC, MCC & AUC;

	Sensibility (SEN)	Balanced accuracy (bACC)	Phi coefficient (MCC)	Area Under the ROC Curve (AUC)
Modified Friis	0.9	75.77%	0.52	0.83
NC Modified Friis	0.9	72.03%	0.35	0.87
WUSN-PLM	0.917	81.061 %	0.643	0.92
FuzDeMa	0.969	88.21	0.798	0.92

 Table 2: Performance evaluation

- MCC = 0.798 → strong correlation between the obervation and the prediction;
- AUC = 0.92 ⇔ 92% chance to do the difference between the reception and not reception of a data.

[DBA2022]. **D. Wohwe Sambo**, B. O. Yenke, A. Förster, I. Ndong, P. Dayang and I. Sarr, "A New Fuzzy Logic Approach for Reliable Communications in Wireless Underground Sensor Networks", Springer Nature – Wireless Networks, vol. 28, no. 7, pp. 3275-3292, 2022.

What's next ?

Good ... Is it really possible to implement ?

We need a real dedicated node!

What is MoleNet¹?

- Underground sensor node;
- From *ComNets* (Univ-Bremen)
- One-hop communication

molenet.org

Integration of FuzDeMa within MoleNet

- Control before any transmission;
- According to the computed reliability:
 - **Transmit** (reliab ≥ 0.5)
 - No transmit (reliab < 0.5)</p>

Evaluation of the energy consumption

- 2 possibilities:
- The gateway is reachable; 1
- The gateway is not reachable; ②
- FuzDeMa:
 - With TX; ③
 - No TX; ④

Table 3 : Evaluation of the energy saved by FuzDeMa according to the data statement

	Energy saved	Data	Observations
True Negative (TN)	81.7876 μJ	Not send & not received	No reception
False Negative (FN)	8.287 μJ	Not send & not received	Reception
False Positve (FP)	65.3007 μJ	Send & not received	No reception
True Positive (TP)	-8.2 μJ	Send & received	Reception

Generalization of FuzDeMa and validation

Parameters	Definitions	Evaluation of the energy gained of		
N	Number of nodes	FuzDeMa after k rounds $(k = 1000)$		
Ei	Energy consumed/round of node <i>i</i> (without FuzDzMa)			
E'_i	Energy consumed/round of node <i>i</i> with FuzDeMa	Energy gain		
P _{comp}	Energy consumed/round due to MC computation			
tx _{cost}	Energy consumed/round during transmission			
fuz _{cost}	Addition energy cost/round of FuzDeMa	ave.		
k	Random number of rounds			
α	Number of reception	Number of receptions		
G _i	Energy saved by node i (FuzDeMa) after k random rounds			
$E_i = P_c$ $E'_i = \begin{cases} \\ \end{cases}$	$\begin{array}{ll} F_{comp} + tx_{cost} \\ E_i + fuz_{cost} \\ E_i + fuz_{cost} - tx_{cost} \end{array} \begin{array}{ll} \text{If transmission (TX)} \\ \text{else} \end{array} \Rightarrow$	$\sum_{i=1}^{2} \frac{1}{100} \frac{1}{100} \frac{200}{200} \frac{300}{300} \frac{400}{400} \frac{500}{500} \frac{600}{600} \frac{70}{70}$ Number of receptions (α)		
Since tx_c	$a_{ost} > fuz_{cost}$ When $\alpha \le \left \frac{k(tx_{cost} - fuz_{cost})}{tx_{cost}} \right $	$\frac{G_{ost}}{ds} \Rightarrow \boxed{G_i = tx_{cost}(k - \alpha) - kfuz_{cost}}$		

Conclusion

Conclusion

In Short!

Thank you ! Get in touch with me

<u>damien.wohwe-sambo@inria.fr</u> https://wsdamieno.github.io/Site_perso/#home

